
A Guide to Making
Mainframe Applications
Cloud-Native

White Paper

Learn more at lzlabs.com2

White Paper 2020

Contents Executive Summary

Summary

What are Cloud-Native Applications?

Why Has it Been Difficult for Mainframe
Applications to Become Cloud-Native?

Eliminating the Cloud-Native Friction
with a Software Defined Mainframe

03

19

04

10

13

04
05
06

06

07
07
07
08
08
09

10
11
11
11
12
12

13
14
14

16

17
18

Cloud Native Computing Foundation
Cloud Native Trail Map
Cloud-Native Application Characteristics

DevOps
Continuous Integration & Continuous Deployment (CI/CD)
Service Architecture
Naturally Orchestrated and Containerised
API-Driven
Stateless Applications
Horizontally Scaled
Logging, Tracing and Monitoring

Instruction-Set Architecture
Mainframe Software Infrastructure
Development, Testing & CI/CD
Monolithic Applications
Absence of Cloud-Native Infrastructure
Logging, Tracing & Monitoring

LzLabs Virtual Machine (LzVM)
LzLabs Native Interface (LzNI)
Decompostition
APIs
Progressive Refactoring
LzWorkbench™
Stateless Services
Logging, Tracing & Monitoring

Learn more at lzlabs.com3

White Paper 2020

By Mark Cresswell
Chief Executive Officer,
LzLabs

For many industries the Rubicon of cloud provisioning, as the default deployment choice
for commercial applications, has been crossed. Alternate deployment models now need far
greater justification than does the cloud.

And the cloud is not just for new applications; many initiatives are underway to transform
legacy applications (that currently run in a variety of traditional environments) such
that they can take advantage of the cloud. Google’s Anthos is a great example of such a
program.

Google is but the tip of the iceberg. Other technology players in the cloud computing
environment, are contributing software infrastructure along an open-source model, to
support this exponentially growing enthusiasm for cloud deployment.

These players have formed an alliance, under the auspices of the Linux Foundation, known
as the Cloud-Native Computing Foundation (CNCF). We discuss the CNCF in more detail
in the next chapter, but at a high-level, it is a remarkably focused, and fit-for-purpose
collection of well-supported technology and expertise designed to make all the benefits of
cloud-computing realisable.

From increased development agility, to horizontal scalability, service-meshes, micro-
services, and security; if you are looking to take advantage of the cloud, you’ll need to
become cloud-native.

However, even with all this innovation, the cloud still seems stubbornly out of reach for
those legacy applications that run on mainframes. This paper explores what it means for
an application to be cloud-native and discusses the friction points associated with making
mainframe applications cloud-native. The paper also details how mainframe applications,
when coupled with the correct virtualization and container models can not only be
easily made to fit into a cloud environment but are actually very good candidates to be
provisioned as cloud-native.

Executive Summary

Learn more at lzlabs.com4

White Paper 2020

Cloud Native Computing Foundation

Launched by the Linux Foundation in 2015, the Cloud Native Computing Foundation
(CNCF) is one of the fastest growing forums for the discussion, development and delivery of
vendor-neutral, open-source, high-quality technology to accelerate the adoption of cloud
computing using a cloud-native model. CNCF represents the groundswell of support for the
utopian ideal that all the best applications are implemented using a cloud-native model.

Before discussing why mainframe applications are seen by many as being the antithesis of
cloud-native, it’s worth looking at what it means to be a cloud-native application.

Cloud-native is a separate and distinct notion to that of simply running in the cloud.
Crucially, “cloud” in cloud-native has nothing to do with where the application runs. The
term concerns itself with development and deployment technology that has its origins
among the public-cloud vendors, but has now gone mainstream; regardless of the final
deployment destination of the application. For an application to be cloud-native, it will
exploit technologies, development patterns and methodologies rarely found in traditional,
monolithic applications.

The term cloud-native is gaining traction as a way of encapsulating the many beneficial
characteristics of applications which exploit the unique elements of cloud-computing.
More than just a marketing term, cloud-native has a robust definition that, in large part,
is promoted by the Cloud-Native Computing Foundation.

What are Cloud-Native
Applications?

Learn more at lzlabs.com5

White Paper 2020

Cloud Native
Trail Map

Source: Cloud Native Computing Foundation

CLOUD NATIVE
TRAIL MAP
The Cloud Native Landscape l.cncf.io
has a large number of options. This Cloud
Native Trail Map is a recommended process
for leveraging open source, cloud native
technologies. At each step, you can choose
a vendor-supported offering or do it yourself,
and everything after step #3 is optional
based on your circumstances.

1. CONTAINERIZATION
• Commonly done with Docker containers
• Any size application and dependencies (even PDP-11
 code running on an emulator) can be containerized
• Over time, you should aspire towards splitting suitable
 applications and writing future functionality as microservices

2. CI/CD
• Setup Continuous Integration/Continuous Delivery
 (CI/CD) so that changes to your source code
 automatically result in a new container being
 built, tested, and deployed to staging and
 eventually, perhaps, to production
• Setup automated rollouts, roll backs and testing

3. ORCHESTRATION &
APPLICATION DEFINITION
• Kubernetes is the market-leading orchestration solution
• You should select a Certified Kubernetes Distribution,
 Hosted Platform, or Installer: cncf.io/ck
• Helm Charts help you define, install, and upgrade
 even the most complex Kubernetes application

4. OBSERVABILITY & ANALYSIS
• Pick solutions for monitoring, logging and tracing
• Consider CNCF projects Prometheus for monitoring,
 Fluentd for logging and Jaeger for Tracing
• For tracing, look for an OpenTracing-compatible
 implementation like Jaeger

5. SERVICE PROXY, DISCOVERY, & MESH
• CoreDNS is a fast and flexible tool that
 is useful for service discovery
• Envoy and Linkerd each enable service
 mesh architectures
• They offer health checking, routing,
 and load balancing

7. DISTRIBUTED DATABASE & STORAGE
When you need more resiliency and scalability than
you can get from a single database, Vitess is a good
option for running MySQL at scale through sharding.
Rook is a storage orchestrator that integrates a
diverse set of storage solutions into Kubernetes.
Serving as the "brain" of Kubernetes, etcd provides a
reliable way to store data across a cluster of machines.
TiKV is a high performant distributed transactional
key-value store written in Rust.

9. CONTAINER REGISTRY & RUNTIME
Harbor is a registry that stores, signs, and scans content.
You can use alternative container runtimes. The most common,
both of which are OCI-compliant, are containerd and CRI-O.

HELP ALONG THE WAY

A. Training and Certification
Consider training offerings from CNCF
and then take the exam to become a
Certified Kubernetes Administrator or a
Certified Kubernetes Application Developer

cncf.io/training

B. Consulting Help
If you want assistance with Kubernetes
and the surrounding ecosystem, consider
leveraging a Kubernetes Certified
Service Provider

cncf.io/kcsp

C. Join CNCF's End User
Community
For companies that don’t offer cloud
native services externally

cncf.io/enduser

WHAT IS CLOUD NATIVE?
Cloud native technologies empower
organizations to build and run scalable
applications in modern, dynamic
environments such as public, private,
and hybrid clouds. Containers, service
meshes, microservices, immutable
infrastructure, and declarative APIs
exemplify this approach.

These techniques enable loosely
coupled systems that are resilient,
manageable, and observable. Com-
bined with robust automation, they
allow engineers to make high-impact
changes frequently and predictably
with minimal toil.

The Cloud Native Computing Foundation
seeks to drive adoption of this para-
digm by fostering and sustaining an
ecosystem of open source, vendor-
neutral projects. We democratize
state-of-the-art patterns to make these
innovations accessible for everyone.

l.cncf.io
v20191107

CNCF Graduated

CNCF Graduated

CNCF Graduated

CNCF Graduated CNCF Graduated CNCF Incubating

CNCF Graduated

CNCF Graduated

CNCF Incubating CNCF Graduated

CNCF Incubating

CNCF Incubating

8. STREAMING & MESSAGING
When you need higher performance than JSON-REST, consider
using gRPC or NATS. gRPC is a universal RPC framework. NATS is
a multi-modal messaging system that includes request/reply,
pub/sub and load balanced queues. CloudEvents is a specification
for describing event data in common ways.

6. NETWORKING & POLICY
To enable more flexible networking, use a CNI-
compliant network project like Calico, Flannel, or
Weave Net. Open Policy Agent (OPA) is a general-
purpose policy engine with uses ranging from
authorization and admission control to data filtering.

10. SOFTWARE DISTRIBUTION
If you need to do secure software distribution,
evaluate Notary, an implementation of The
Update Framework.

CNCF Incubating

CNCF Incubating CNCF Incubating

CNCF Incubating

CNCF Incubating

CNCF Incubating

CNCF Incubating CNCF Incubating

CNCF Incubating

CNCF Incubating

CNCF Incubating

Learn more at lzlabs.com6

White Paper 2020

Cloud-Native Application Characteristics

The core characteristics of cloud-native applications are as follows:

DevOps

This characteristic of cloud-native applications is listed first for a very good reason. The
implementation of processes and technologies that fall under the umbrella term of DevOps
is fundamental to cloud-native applications. Highly collaborative and agile development
processes, with short development cycles of small incremental improvements, coupled
with efficient and automated testing at scale, has been the impetus behind many cloud-
native technologies. The so-called DevOps toolchain that facilitates these optimized
development cycles feeds into other components that underpin cloud-native applications.

Continuous Integration & Continuous Deployment (CI/CD)

It’s worth specifically calling out CI/CD as it relates to cloud-native applications in the
context of DevOps. CI/CD is not a new concept, but in conjunction with other features of
cloud computing, it has the power to fundamentally change the way organisations think
about application roll-out. By developing small components of an application that can,
upon the merge back into a source-code repository, be automatically integrated with other
components and extensively tested, defects can be detected far more rapidly. Validating
changes in this way ensures deployments proceed quickly and with the assurance of
quality.

With smaller, independently developed and deployed components, organizations can
employ novel methods of roll-out such as component-level A/B testing. New features can
be “Canary Tested”1 wherein they are made available in containers only to a select group of
users.

A great deal more can be said about CI/CD, but for the purposes of this paper we can stop
at the fact that it relies on the dynamic provisioning of compute resources to automatically
integrate and extensively test the smallest of incremental developments. In this respect
cloud computing has been a game-changer for CI/CD. For evidence of the impact to
development velocity of a commitment to CI/CD, Amazon’s deployment rate takes some
beating.2

1 What is canary (canary test, canary development)? - TechTarget - https://whatis.techtarget.com/definition/

canary-canary-testing

2 How Amazon handles a new software deployment every second - ZDNet - https://www.zdnet.com/article/

how-amazon-handles-a-new-software-deployment-every-second/

Learn more at lzlabs.com7

White Paper 2020

Service Architecture

At their core, cloud-native applications are based on independently deployable
components. In practice this means that, even though these components are part of a
larger system, they can be upgraded and scaled independently of other components
with which they interact. For this deployment flexibility to be plausible and valuable,
the interfaces between the components of the applications must be stable, and the
components must be materially smaller than the application as a whole.

These requirements have given rise to the term Micro-Services Architecture (MSA). In
reality, MSA is an extension of both an API-driven model for development and the CI/
CD idea that supports rapid development, testing and deployment of smaller application
components. When implemented using containers and infrastructure software endorsed
by the CNCF, the management overhead of handling many more independent components
within an application is reduced.

Naturally Orchestrated and Containerized

A cloud-native application will not be tied to any hardware or software infrastructure, other
than by choice. Using containers ensures this separation and also forms the basis of more
advanced deployment options such as a server-less environment for applications.

Containerization, as a core component of cloud infrastructure, has been around for a long
time in internet terms. As far back as 2014, Google was deploying thousands of containers
per second.3 As containers continue to proliferate in support of cloud-native application
development, they need run-time “management”. One element of this management
requirement, often referred to as orchestration, has fallen to a core component of cloud-
native infrastructure called Kubernetes. Kubernetes and its ecosystem of technologies
and tools ensures that containers are correctly load-balanced across a cluster, and
that the services they provide to other parts of the application are easy to find. Other
capabilities such as restarting failed containers; ensuring that any application affinities are
honoured; and storage management and authentication are tightly woven into the facilities
Kubernetes provides to containers.

Containers also provide an excellent way of creating and deploying Microservices; the
smaller units of application functionality described previously. Developers who exploit MSA
leverage containers, among other reasons, to ensure they need not concern themselves
with infrastructure issues, which leads perfectly into a discussion on APIs.

API Driven

The notion of APIs is not new, and indeed their use in modern development is now
commonplace. But, in the context of cloud-native, APIs take on a special significance. APIs
are used within a cloud-native application to decouple the provider of a service from its
consumer in a way that cascades throughout the entire development and deployment
process.

3 EVERYTHING at Google runs in a container - The Register - https://www.theregister.co.uk/2014/05/23/google_

containerization_two_billion/

Learn more at lzlabs.com8

White Paper 2020

Stated differently, in cloud-native environments the implementation of the API is a question
the developer of the consumer component need not answer. It is enough to know that
its implementation exists somewhere within the cloud-infrastructure, and that it can be
found using standard techniques. In many cases this may be no more significant than
inclusion of dependencies within a container image, as provided by the DevOps Toolchain,
or it may be a RESTful or gRPC service available via service discovery infrastructure
facilitated by Kubernetes. This is in stark contrast to the inter-program interfaces of legacy
implementations, which require programmers to statically link APIs to their applications
and are typically tightly coupled and brittle.

An important collateral benefit of a commitment to robust APIs, is that it enables an
organization to embrace “digital” more easily. APIs do not just enable components of an
application to interact more easily; they can also be revenue-generating in their own right.
The APIs made available to third-parties are driving digital initiatives that would be difficult
to secure within monolithic applications. In a microservice-based cloud application, the
cloud platform enables rich security policies and proxies to allow specific services to be
safely exposed to external applications. This notion of driving revenue directly from APIs, is
often referred to as the API economy. A thorough explanation of the trend is provided by a
Forbes article from 2017.4

Stateless Applications

Of course, state must be maintained somewhere for most enterprise applications.
However, cloud-native applications are designed to ensure that state is not inadvertently
maintained within the application during its execution or shared at the application level,
other than through those elements specifically identified as being stateful, such as
Kubernetes StatefulSet deployments, databases and queues; and only then in ways that
do not constrain other elements of cloud-native design. When appropriately managed,
state provides significant benefits in terms of horizontal scaling, recovery and service
architectures.

In pure architectural terms, cloud-native levels of separation can introduce complexity not
found in monolithic stateful applications. However, open-source frameworks and tools,
specifically those endorsed by organisations such as CNCF, have made such designs easier
to implement and manage. The fundamentals of this management are discussed later.

Horizontally Scaled

One of the fundamental benefits of a cloud computing deployment model is on-demand
scaling of resources to support workload growth or spikes. This scaling model tends to
be horizontal in nature insofar as the limits are based on the number of machine images
available to meet workload demand, rather than the resources that can be made available
to any one machine image. To take advantage of this model requires the application to be
implemented using many of the patterns and tools previously mentioned.

4 2017 Is Quickly Becoming The Year Of The API Economy - Forbes - https://www.forbes.com/sites/

louiscolumbus/2017/01/29/2017-is-quickly-becoming-the-year-of-the-api-economy/

In pure architectural
terms, cloud-native
levels of separation
can introduce
complexity not found
in monolithic stateful
applications.

Learn more at lzlabs.com9

White Paper 2020

Logging, Tracing and Monitoring

For all the many advantages of cloud-native implementations, one of the challenges is
diagnosing issues as they arise. With application components, and the transactions they
support, loosely coupled and distributed across many machine images, identifying the
root-cause of failures or degradation can be difficult. Having said that, technologies have
emerged that go a long way towards providing the level and class of instrumentation
required. Indeed, three of the top-level open-source projects within CNCF: Prometheus,
Jaeger and Fluentd, are entirely focused on instrumenting cloud-native applications. The
result of this commitment has been an explosion in support for these projects.

Learn more at lzlabs.com10

White Paper 2020

It is conventional wisdom that mainframe legacy applications cannot participate in the new
world of cloud-native computing; so much so that it is rare for commentators to question
why this is. In reality there are only a few reasons why it is difficult and, as we shall see later,
none of these reasons are insurmountable. These items, detailed in the following paragraphs
can be summarized as follows:

Why Has it Been Difficult for
Mainframe Applications to
Become Cloud-Native?

• Instruction-set Architecture
• Mainframe Software Infrastructure
• Development, Testing & CI/CD

• Monolithic Applications
• Cloud-native Infrastructure
• Logging, Tracing & Monitoring

Instruction-Set Architecture

The biggest barrier to mainframe legacy application participation in the cloud-native
movement is the simple fact that the applications will not run on the underlying cloud
hardware, without significant refactoring and recompilation. LzLabs explores this restriction
in more detail in its white paper the Why Source-code Dependency is a Challenge for
Mainframe Workload Rehosting.5 Mainframe applications are typically compiled into
instruction-set architecture- specific machine-code. The mainframe instruction-set
architecture is substantially different from the x86 platforms that underpin almost all cloud
services.

5 Why Source Code Dependency is a Challenge for Mainframe Workload Rehosting - LzLabs - https://hubs.ly/

H0nGMY40

Learn more at lzlabs.com11

White Paper 2020

Mainframe Software Infrastructure

Legacy mainframe applications rely on infrastructure software to manage batch and
online activity, data access and many other legacy mainframe features. Components such
as: CICS®, JES, IMS™, DB2® and VSAM are woven tightly into the applications. Like the
applications themselves, this infrastructure software is also tied to the physical mainframe
hardware; it will not run in a conventional x86 cloud environment.

Development, Testing & CI/CD

The more the notion of cloud-native applications is understood, the more the subject of a
highly-optimized, development pipeline emerges as central to that notion. Although it’s no
longer necessary to sign-on to a 3270 terminal to write COBOL programs, and tools like
Jenkins can remotely schedule builds of mainframe legacy applications, all other aspects of
a mainframe development pipeline are essentially as they were in the ‘80s and ‘90s.

In more practical terms, a mainframe development pipeline cannot support many of the
rapid deployment features upon which cloud-native applications rely. For example, it’s
virtually impossible to spin up testing environments on mainframes without extensive
planning. There is just no support for large-scale, container-driven integration testing after
each merge of a code branch.

Monolithic systems and application architectures make it very difficult to employ strategies
like Canary Testing to switch certain users to a newly built component for initial user-
acceptance. And the idea of delivering small incremental enhancements on a daily basis
is an anathema in this world. In general, these restrictions are the result of what have
become known as monolithic applications.

Monolithic Applications

Most mainframe applications were designed and built during an era when scalability was
a vertical-only proposition – that of increasing processor, memory and I/O capacity on the
same machine image. Consequently, little consideration was given to application design
patterns that supported clusters of many machine images upon which the components
of the application could be concurrently scheduled. Also, in the heyday of mainframe
application development, very little infrastructure software existed to support rapid and
“componentized” application development. The result was application implementations
which we now refer to as monolithic, where virtually everything the application needed
ran within the same application process – or address space in mainframe terms – and was
often implemented within a single application module.

Mainframe applications are quintessentially monolithic, insofar as any changes often
require an entire application to be deployed for each small change. As we have discussed,
the testing landscape for mainframe applications does not lend itself to repeated and
frequent scaling or regression testing. Consequently, such small changes are not routinely
undertaken. Over time such restrictions have served to reinforce the monolithic nature

Learn more at lzlabs.com12

White Paper 2020

Much of the technology
that has emerged
in recent years to
support cloud-native
applications is simply
not available within the
legacy environment of
mainframes.

of mainframe applications; there is little point breaking them into smaller deployable
components if the testing required to support a more modular and agile development
pipeline is simply unavailable.

Even when monolithic mainframe applications make use of well-defined interfaces to
communicate between software modules, the APIs tend to be implemented by programs
that are statically linked into the main application. This use of APIs is incomparable, to even
non-cloud-enabled applications on other platforms. The key point is that it is more difficult
to refactor mainframe applications to make greater use of APIs than for legacy applications
to be implemented on more modern platforms.

Furthermore, mainframe applications have similar dependencies on mainframe
infrastructure software that is itself statically linked into the applications.

This tight coupling of application components and the operating environment itself, and
the challenges in refactoring this particular kind of application, are central to why it is so
difficult for these applications to become cloud-native.

Absence of Cloud-Native Infrastructure

Much of the technology that has emerged in recent years to support cloud-native
applications is simply not available within the legacy environment of mainframes.

Chief among the reasons why the mainframe environment is unable to run cloud-native
applications is lack of support for containers that can run legacy applications, or any of
the orchestration services upon which their exploitation depends. Without the ability to
run application components using a containerized deployment model, many of the other
cloud-native requirements become unachievable.

For example, even if you wished to deploy a newly minted application change, isolated from
the rest of the environment and application components, in its own container for testing
purposes, you would instead need to replicate potentially the entire application, data, and
infrastructure.

Logging, Tracing & Monitoring

The mainframe environment is one of the most thoroughly instrumented computing
architectures. The standards of reliability it has established over the decades are rooted in
its default logging and monitoring capabilities. Furthermore, many independent software
vendors have emerged to augment these features with even greater levels of precision and
diagnosis. Yet, like many other aspects of legacy mainframe computing the lens through
which this instrumentation works is that of monolithic applications, running across a limited
number of machine instances; with a consistent set of infrastructure components. As
granular and detailed as it is, it cannot provide (in functional terms) what’s needed for its
applications to become cloud-native.

Learn more at lzlabs.com13

White Paper 2020

As the name suggests LzLabs Software Defined Mainframe® (LzSDM®) is a mainframe
implemented in software. It is the ultimate expression of infrastructure as code, insofar as it
eliminates any lock-in between a legacy mainframe application and the underlying hardware
for which it was originally designed.

It is based on two different, but entirely complimentary concepts. These concepts are similar
to the way Java operates across environments. And to aid in that analogy, we refer to the
concepts in a similar way.

Eliminating the Cloud-Native
Friction with a Software
Defined Mainframe

LzLabs Virtual Machine (LzVM)

LzVM is the component of LzSDM that eliminates the instruction-set issues of running
customer mainframe applications, which exist only in binary form, on x86 computers;
thereby opening up the entire world of cloud-native facilities. LzVM shares many of the
core features of a typical Java Virtual Machine (JVM). It loads mainframe binary programs
in the same way a JVM loads a Java byte-code program. LzVM also features optimizations
such as Just-in-Time (JIT) compilation to ensure the programs work optimally on an x86
computer.

Learn more at lzlabs.com14

White Paper 2020

LzLabs Native Interface (LzNI)

As we saw in the previous section, there is no escaping the fact that legacy programs
depend on services provided by software infrastructure that only runs on the legacy
mainframe operating environment. The programs interact with these features in a variety
of ways, each of which is analogous to what one might describe as an API. This proprietary
software infrastructure is just not present on x86 computers running Linux.

LzSDM solves this problem by replacing the implementations of the APIs, which formerly
locked a legacy application into mainframe software infrastructure, with implementations
based on open-source components. These components deliver the same outcome for the
application as it previously had on the mainframe.

When LzVM encounters a request for a service provided by such an API, it hands that
request to LzNI. LzNI uses underlying features on the Linux environment to satisfy the
request, in a way that ensures the behavior of the application is preserved. Crucially, it is
in LzNI where many of the capabilities of LzSDM, which enable mainframe applications to
become cloud-native, reside.

In conjunction, these two facilities – the LzVM execution engine and services provided by
LzNI – enable legacy mainframe applications to genuinely operate and appear as Linux
applications. From all practical perspectives, there is now little architectural distinction
between a legacy mainframe application running within LzVM and using LzNI on an x86
computer, and a Java application running within a JVM and using JNI on an x86 computer.

With the mental model of the runtime environment in place, it becomes easier to
understand how the rest of the journey toward a cloud-native implementation of
mainframe legacy applications unfolds.

Decomposition

Simply moving a monolithic legacy mainframe application to a cloud environment does not
make it cloud-native. However, by using LzSDM, the journey down that path begins. This
section of the paper builds on the fundamentals of LzVM and LzNI to illustrate how the
path to cloud-native mainframe applications emerges.

APIs

The first thing that happens, when using LzSDM as the platform to move legacy
mainframe applications into the cloud, is that all the statically-linked, platform-specific API
implementations, which tie the applications to the legacy mainframe, are removed.

The removal of the existing API implementation is crucial on two levels. First, as mentioned
in the previous section, the existing API implementation code will not run on an x86
cloud, so there is no point in its remaining present. Secondly, the existing APIs, and
their implementation, perpetuate the monolithic nature of the application. Components

Learn more at lzlabs.com15

White Paper 2020

of the existing implementation code tend to be woven tightly into the applications via
static linkage. The implementations dictate certain service models that cannot satisfy the
requirements of a cloud-native application.

The various API implementations are replaced within LzSDM world by the LzNI capability
described above, using a consistent and dynamic model. The implementation for these
new APIs all follow the same basic pattern; the implementation is based on standard Linux
facilities and cloud-native components, augmented with LzSDM code that ensures the
applications requesting the APIs get the same result from the new API implementation as
from the legacy implementations they replace.

What this implementation model allows for is the exploitation of cloud-native components
in areas that provide immediate benefit as the application is migrated to the cloud. Three
examples of this are presented to illustrate specifically what this means.

Firstly, LzSDM uses cloud-native IPC services such as gRPC6 for communications between
applications and system services, such as input/output services. LzSDM replaces the
synchronous calls between an application and the mainframe I/O subsystem, with
references to these modular gRPC services we have developed. In so doing, the erstwhile
mainframe application will now benefit from all the inherent capabilities of load-balancing,
tracing and granular authentication that gRPC provides in a cloud-native context.

Secondly, LzLabs has implemented distributed lock management within LzSDM on top of
a cloud-native, scalable, distributed solution, etcd,7 to serialise access to resources across
instances of LzSDM within the cluster. etcd is a reliable, fast, key-value store for critical
data items that need to be synchronised in a cluster. It is a core component of Kubernetes,
used to manage state and configuration within a Kubernetes cluster. In conjunction with
its container-friendly implementation it is a perfect tool to serialize access to resources. By
using etcd, LzSDM enables customers to run mainframe applications in horizontally-scaled,
server-less containers; with the same integrity as if they were running in a mainframe
Sysplex.

Thirdly, is the implementation of databases within LzSDM. Regardless of which database
API a mainframe application is using, within the implementation of the database API,
LzSDM normalizes the syntax of the request into either Structured Query Language (SQL)
or Cypher Query Language (CQL) and ensures all semantic inconsistencies between the
intent of the original mainframe database request and the SQL or CQL implementation are
compensated for. LzSDM then proceeds to use a standard cloud service database API to
satisfy the request. This mechanism enables mainframe applications to take full advantage
of Relational and Graph services provided by cloud-service providers.

gRPC, etcd and cloud database services are just three of a range of cloud-native
components LzSDM relies on to transform the future potential of mainframe applications.

6 gRPC - A high-performance, open source universal RPC framework - https://grpc.io/

7 etcd - https://etcd.io/

What this
implementation
model allows for is the
exploitation of cloud-
native components
in areas that provide
immediate benefit
as the application is
migrated to the cloud.

Learn more at lzlabs.com16

White Paper 2020

Progressive Refactoring

Sometimes called incremental modernization, progressive refactoring is the most effective
method of reaching the promised land of a fully cloud-native implementation.

In its’ report: Use Continuous Modernization to Build Digital Platforms From Legacy
Applications8, Gartner’s headline recommendation reads “Legacy application portfolios are
often viewed as a problem and subjected to large-scale rip-and-replace efforts. Application
leaders should instead manage their portfolio as an asset, removing impediments and
executing continuous business-driven modernization to provide optimum value”.

At its most fundamental, LzSDM is primarily designed to make progressive refactoring
toward a fully cloud-native implementation for mainframe applications a reality.

Before proceeding to explain how LzSDM supports progressive refactoring, an important
point of clarification must be made. As we have seen, a core function of LzSDM enables
mainframe binary programs to run on x86 cloud hardware without changes. Yet we are
now discussing changing programs in the context of progressive refactoring; this seems
like a contradiction.

Central to ability of LzSDM to enable progressive refactoring is the fact that by enabling
mainframe binaries to run unchanged, it allows a refactoring program to focus on only
those programs that need to be changed. Any other program dependency can remain in
its binary form.

Stated differently, conventional mainframe applications may consist of hundreds, and in
some cases thousands, of programs with a complex chain of interdependencies. It’s likely
that the initial scope of any progressive refactoring exercise will be limited to just a handful
of those programs. LzSDM ensures that the final refactored program can continue to
depend on the remaining programs, which will be in mainframe binary form, in a perfectly
natural way. The alternative would be untenable; changing potentially thousands of
programs just to support the refactoring of handful.

LzWorkbench™

Central to the ability of LzSDM to support progressive refactoring toward a fully cloud-
native implementation is LzWorkbench. LzWorkbench is a set of plug-ins to Eclipse;
LLVM-based compilers; a runtime environment for interoperability, and a debugging
infrastructure. LzWorkbench is designed to make refactoring legacy mainframe applications
an identical experience to working on conventionally modern applications.

LzWorkbench fits perfectly into a modern development pipeline. The fit is so perfect
that the only difference between working on the applications, which originally ran on the
mainframe, and any other application, is the language the program is written in.

This consistency means the entire scope of cloud-native services becomes available. With
containerization of these applications a standard option, and the mechanism by which
LzSDM can uncouple even tightly linked components of a monolithic application, the

8 Use Continuous Modernization to Build Digital Platforms From Legacy Applications (ID G00344837) - Gartner -

https://www.gartner.com/en/documents/3846764/use-continuous-modernization-to-build-digital-platforms-0

Learn more at lzlabs.com17

White Paper 2020

move to an architecture based on microservices is no more complicated for mainframe
legacy applications than for any other application. These mainframe applications can now
be enhanced according to exactly the same DevOps methodology as any of the other
applications undergoing progressive refactoring.

Stateless Services

The preservation of state is obviously crucial for enterprise applications. However, the
mechanism by which state is preserved has an impact on how far towards a cloud-native
implementation the application can travel.

The question of state has two dimensions in respect of the way LzSDM enables legacy
mainframe applications to become cloud-native.

The first of these dimensions relates to the services LzSDM provides to the applications.
As previously mentioned, LzNI is the component of LzSDM that implements the features
mainframe applications rely on to run successfully. LzNI features are implemented to the
maximum extent possible using popular open-source libraries and specifically cloud-native
projects. The net result is the state is never inadvertently stored between invocations of the
applications, by the infrastructure itself. But when state is to be stored it is stored through
entirely conventional means.

For example, LzSDM must provide a job management service, compatible with mainframe
job submission, to enable a batch workload to function. This service is implemented
entirely statelessly, and as such can be scaled like any other cloud-native workload,
with incoming requests balanced using standard cloud-native load balancing. However,
the batch jobs it manages, and any intermediate states of those jobs, are maintained
transactionally within a shared PostgreSQL instance.

LzSDM also implements a form of workload separation, where services for directly
managing files and other resources, which maintain state, can be containerized separately

DEVELOPMENT PIPELINE
INTEGRATION

01001010101
01001001010
01010100100
10100101010

01001010101
01001001010
01010100100
10100101010

01001010101
01001001010
01010100100
10100101010

01001010101
01001001010
01010100100
10100101010

01001010101
01001001010
01010100100
10100101010

01001010101
01001001010
01010100100
10100101010

01001010101
01001001010
01010100100
10100101010

01001010101
01001001010
01010100100
10100101010

01001010101
01001001010
01010100100
10100101010

01001010101
01001001010
01010100100
10100101010

Learn more at lzlabs.com18

White Paper 2020

from the processes that act upon them. In doing so, these services can be managed by
Kubernetes as StatefulSets within the cluster.

Readers familiar with mainframe concepts will understand clearly the analogy with
Resource Owning Regions and File Owning Regions. LzSDM enables such separation, within
cloud-native infrastructure, without forcing code changes.

There are other examples, too numerous to mention, where LzSDM design has been
informed by the needs of state management in a cloud-native world.

Secondly, mainframe applications were developed long before the cloud-native notion
existed; consequently, they maintain state in a variety of ways. Although, rarely was the
action considered a stateful programming decision when these applications were originally
written.

This is a very hard problem to solve. In some, but by no means all, cases the storing of
state within mainframe applications occurs through well-defined APIs. It is these APIs that
have been reimplemented by LzNI. Wherever possible, LzLabs is augmenting these LzNI
implementations with capabilities to ensure that any action that could create an affinity is
shared in the cluster in a way that doesn’t impact application performance or outcome, but
does eliminate any state-oriented constraints on horizontal scaling.

Logging, Tracing & Monitoring

One of the drawbacks often cited for cloud-native implementations is complexity of
topology. A monolithic legacy application can be visualized easily, has a manageable
number of interoperability points and its runtime whereabouts are entirely predictable. A
fully implemented cloud-native application is almost the exact opposite.

Fortunately, the cloud-native movement has provided a well-supported and implemented
set of technologies to help manage the increased complexity of cloud-native applications.
These technologies are implemented to a greater or lesser extent within all the LzNI
implementations LzLabs has developed for LzSDM.

The Jaeger root-cause tracing mechanism is implemented throughout LzSDM. Using Jaeger
ensures that any choice of visualisation tool, which supports the OpenTracing standard,
can see how all the components of an application work across the cluster and where any
degradation is occurring.

Similarly, the use of Prometheus within the LzNI implementations enables raw system
performance clocks and counters to be aggregated across the cluster.

Since many of the other cloud-native technologies implemented within LzSDM contribute
to this instrumentation infrastructure, the level of granularity dwarfs anything the
management of these applications would have enjoyed in their original mainframe
implementation.

Importantly, these management features, as implemented in LzSDM, go a long way to
ensuring that legacy mainframe applications can be treated exactly the same as any other
cloud-native application from the very important perspective of service-level management.

Learn more at lzlabs.com19

White Paper 2020

System-of-record data residing on mainframes is some of the most intrinsically valuable
data to the enterprise. Yet the applications and services available to leverage that data
are constrained in their agility by a platform that enjoys none of the innovation present in
cloud-native computing.

The conventional wisdom is that these mainframe applications are virtually impossible to
move to the cloud. However, when based on LzLabs Software Defined Mainframe (LzSDM),
the movement to the cloud becomes far easier and with far less risk than previously
imaginable.

Importantly, using LzSDM, it is not only possible to rehost mainframe legacy applications
on cloud infrastructure, but it can be done in ways that instantly increase the application’s
opportunities to take advantage of cloud-native features, without requiring any changes
to application source-code. Furthermore, the applications are now positioned perfectly for
progressive refactoring towards a more complete cloud-native implementation.

Summary

LzLabs is a software company that develops innovative solutions for enterprise computing
customers, including its LzLabs Software Defined Mainframe® (LzSDM®). The company was
founded in 2011 and is headquartered in Zürich, Switzerland. LzSDM® liberates and enables
customer legacy applications to run unchanged on both Linux hardware and Cloud infrastructures.
Thousands of mainframe transactions are processed per second, while maintaining enterprise
requirements for reliability, availability, serviceability, and security. Our software solution provides
unrivaled compatibility and exceptional performance, dramatically reducing IT costs. LzLabs’ offices
in Switzerland and the UK are home to highly-experienced mainframe experts and modern IT
thought leaders from across the globe.

About LzLabs

LzLabs GmbH
@LzLabsGmbH
info@lzlabs.com

LzLabs GmbH
Richtiarkade 16
CH-8304 Wallisellen,
Switzerland

+41 44 515 9880

Contact Us Duke St., 7th Floor, Block C
Duke’s Court Building
Woking, GU21 5BH
United Kingdom

+44 (0)1483 319185

lzlabs.com/products
LzLabs®, the LzLabs® logo, LzLabs Software Defined
Mainframe®, LzSDM®, LzOnline™, LzBatch™, LzRelational™
and LzHierarchical™ are trademarks or registered
trademarks of LzLabs GmbH.
z/OS®, RACF®, CICS®, IMS™ and DB2® are registered
trademarks of International Business Machines
Corporation. Linux is a trade mark or (in some countries)
registered trademark of Linus Torvalds. All other product
or company names mentioned in this publication are
trademarks, service marks, registered trademarks, or
registered service marks of their respective owners.
Other third party marks are the trademarks or registered
trademarks of their owners.

Learn more at lzlabs.com

